Real-Time Progressive Hyperspectral Image Processing Endmember Finding and Anomaly Detection /

The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be us...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chang, Chein-I (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04512nam a22005175i 4500
001 978-1-4419-6187-7
003 DE-He213
005 20160623185800.0
007 cr nn 008mamaa
008 160322s2016 xxu| s |||| 0|eng d
020 |a 9781441961877  |9 978-1-4419-6187-7 
024 7 |a 10.1007/978-1-4419-6187-7  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Chang, Chein-I.  |e author. 
245 1 0 |a Real-Time Progressive Hyperspectral Image Processing  |h [electronic resource] :  |b Endmember Finding and Anomaly Detection /  |c by Chein-I Chang. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XXIII, 623 p. 331 illus., 256 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview and Introduction -- Part I: Preliminaries -- Linear Spectral Mixture Analysis -- Finding Endmembers in Hyperspectral Imagery -- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection -- Hyperspectral Target Detection -- Part II: Sample-wise Sequential Processes for Finding Endmembers -- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis -- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers -- Part III: Sample-Wise Progressive Processes for Finding Endmembers -- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis -- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers -- Part IV: Sample-Wise Progressive Unsupervised Target Detection -- Progressive Anomaly Detection -- Progressive Adaptive Anomaly Detection -- Progressive Window-Based Anomaly Detection -- Progressive Subpixel Target Detectio n and Classification. 
520 |a The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral imaging area Develops sequential and progressive algorithms for finding endmembers as they relate to real time hyperspectral image processing Designs algorithms for anomaly detection from causality and real time perspectives and investigates the effects of causality and real-time processing in anomaly detection. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 0 |a Biometrics (Biology). 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Biometrics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441961860 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-6187-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)