Real-Time Progressive Hyperspectral Image Processing Endmember Finding and Anomaly Detection /

The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be us...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chang, Chein-I (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Overview and Introduction
  • Part I: Preliminaries
  • Linear Spectral Mixture Analysis
  • Finding Endmembers in Hyperspectral Imagery
  • Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection
  • Hyperspectral Target Detection
  • Part II: Sample-wise Sequential Processes for Finding Endmembers
  • Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection
  • Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis
  • Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis
  • Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers
  • Part III: Sample-Wise Progressive Processes for Finding Endmembers
  • Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection
  • Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis
  • Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis
  • Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers
  • Part IV: Sample-Wise Progressive Unsupervised Target Detection
  • Progressive Anomaly Detection
  • Progressive Adaptive Anomaly Detection
  • Progressive Window-Based Anomaly Detection
  • Progressive Subpixel Target Detectio n and Classification.