Extreme Statistics in Nanoscale Memory Design

Extreme Statistics in Nanoscale Memory Design brings together some of the world’s leading experts in statistical EDA, memory design, device variability modeling and reliability modeling, to compile theoretical and practical results in one complete reference on statistical techniques for extreme stat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Singhee, Amith (Επιμελητής έκδοσης), Rutenbar, Rob A. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US : Imprint: Springer, 2010.
Έκδοση:1.
Σειρά:Integrated Circuits and Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03164nam a22004935i 4500
001 978-1-4419-6606-3
003 DE-He213
005 20151204191746.0
007 cr nn 008mamaa
008 100917s2010 xxu| s |||| 0|eng d
020 |a 9781441966063  |9 978-1-4419-6606-3 
024 7 |a 10.1007/978-1-4419-6606-3  |2 doi 
040 |d GrThAP 
050 4 |a TK7888.4 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
082 0 4 |a 621.3815  |2 23 
245 1 0 |a Extreme Statistics in Nanoscale Memory Design  |h [electronic resource] /  |c edited by Amith Singhee, Rob A. Rutenbar. 
250 |a 1. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2010. 
300 |a X, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Integrated Circuits and Systems,  |x 1558-9412 
505 0 |a Extreme Statistics in Memories -- Statistical Nano CMOS Variability and Its Impact on SRAM -- Importance Sampling-Based Estimation: Applications to Memory Design -- Direct SRAM Operation Margin Computation with Random Skews of Device Characteristics -- Yield Estimation by Computing Probabilistic Hypervolumes -- Most Probable Point-Based Methods -- Extreme Value Theory: Application to Memory Statistics. 
520 |a Extreme Statistics in Nanoscale Memory Design brings together some of the world’s leading experts in statistical EDA, memory design, device variability modeling and reliability modeling, to compile theoretical and practical results in one complete reference on statistical techniques for extreme statistics in nanoscale memories. The work covers a variety of techniques, including statistical, deterministic, model-based and non-parametric methods, along with relevant description of the sources of variations and their impact on devices and memory design. Specifically, the authors cover methods from extreme value theory, Monte Carlo simulation, reliability modeling, direct memory margin computation and hypervolume computation. Ideas are also presented both from the perspective of an EDA practitioner and a memory designer to provide a comprehensive understanding of the state-of -the-art in the area of extreme statistics estimation and statistical memory design. Extreme Statistics in Nanoscale Memory Design is a useful reference on statistical design of integrated circuits for researchers, engineers and professionals. 
650 0 |a Engineering. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 0 |a Electronic circuits. 
650 1 4 |a Engineering. 
650 2 4 |a Circuits and Systems. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
700 1 |a Singhee, Amith.  |e editor. 
700 1 |a Rutenbar, Rob A.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441966056 
830 0 |a Integrated Circuits and Systems,  |x 1558-9412 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-6606-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)