Vitushkin’s Conjecture for Removable Sets

Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dudziak, James J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2010.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03168nam a22004455i 4500
001 978-1-4419-6709-1
003 DE-He213
005 20151204143927.0
007 cr nn 008mamaa
008 110201s2010 xxu| s |||| 0|eng d
020 |a 9781441967091  |9 978-1-4419-6709-1 
024 7 |a 10.1007/978-1-4419-6709-1  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Dudziak, James J.  |e author. 
245 1 0 |a Vitushkin’s Conjecture for Removable Sets  |h [electronic resource] /  |c by James J. Dudziak. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a XII, 332 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Removable Sets and Analytic Capacity -- Removable Sets and Hausdorff Measure -- Garabedian Duality for Hole-Punch Domains -- Melnikov and Verdera’s Solution to the Denjoy Conjecture -- Some Measure Theory -- A Solution to Vitushkin’s Conjecture Modulo Two Difficult Results -- The T(b) Theorem of Nazarov, Treil, and Volberg -- The Curvature Theorem of David and Léger. 
520 |a Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 6-8 of this carefully written text present a major recent accomplishment of modern complex analysis, the affirmative resolution of this conjecture. Four of the five mathematicians whose work solved Vitushkin's conjecture have won the prestigious Salem Prize in analysis. Chapters 1-5 of this book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. Although standard notation is used throughout, there is a symbol glossary at the back of the book for the reader's convenience. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441967084 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-6709-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)