Large Sample Techniques for Statistics

This book offers a comprehensive guide to large sample techniques in statistics. More importantly, it focuses on thinking skills rather than just what formulae to use; it provides motivations, and intuition, rather than detailed proofs; it begins with very simple techniques, and connects theory and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jiang, Jiming (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Έκδοση:1.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03928nam a22004935i 4500
001 978-1-4419-6827-2
003 DE-He213
005 20151204180953.0
007 cr nn 008mamaa
008 100702s2010 xxu| s |||| 0|eng d
020 |a 9781441968272  |9 978-1-4419-6827-2 
024 7 |a 10.1007/978-1-4419-6827-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Jiang, Jiming.  |e author. 
245 1 0 |a Large Sample Techniques for Statistics  |h [electronic resource] /  |c by Jiming Jiang. 
250 |a 1. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XVIII, 610 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 0 
505 0 |a The ?-? Arguments -- Modes of Convergence -- Big O, Small o, and the Unspecified c -- Asymptotic Expansions -- Inequalities -- Sums of Independent Random Variables -- Empirical Processes -- Martingales -- Time and Spatial Series -- Stochastic Processes -- Nonparametric Statistics -- Mixed Effects Models -- Small-Area Estimation -- Jackknife and Bootstrap -- Markov-Chain Monte Carlo. 
520 |a This book offers a comprehensive guide to large sample techniques in statistics. More importantly, it focuses on thinking skills rather than just what formulae to use; it provides motivations, and intuition, rather than detailed proofs; it begins with very simple techniques, and connects theory and applications in entertaining ways. The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first 10 chapters contains at least one section of case study. The last five chapters are devoted to special areas of applications. The sections of case studies and chapters of applications fully demonstrate how to use methods developed from large sample theory in various, less-than-textbook situations. The book is supplemented by a large number of exercises, giving the readers plenty of opportunities to practice what they have learned. The book is mostly self-contained with the appendices providing some backgrounds for matrix algebra and mathematical statistics. The book is intended for a wide audience, ranging from senior undergraduate students to researchers with Ph.D. degrees. A first course in mathematical statistics and a course in calculus are prerequisites. Jiming Jiang is a Professor of Statistics at the University of California, Davis. He is a Fellow of the American Statistical Association and a Fellow of the Institute of Mathematical Statistics. He is the author of another Springer book, Linear and Generalized Linear Mixed Models and Their Applications (2007). Jiming Jiang is a prominent researcher in the fields of mixed effects models, small area estimation and model selection. Most of his research papers have involved large sample techniques. He is currently an Associate Editor of the Annals of Statistics. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441968265 
830 0 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 0 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-6827-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)