Second Order Differential Equations Special Functions and Their Classification /

Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-orde...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kristensson, Gerhard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02890nam a22004935i 4500
001 978-1-4419-7020-6
003 DE-He213
005 20151125192613.0
007 cr nn 008mamaa
008 100805s2010 xxu| s |||| 0|eng d
020 |a 9781441970206  |9 978-1-4419-7020-6 
024 7 |a 10.1007/978-1-4419-7020-6  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Kristensson, Gerhard.  |e author. 
245 1 0 |a Second Order Differential Equations  |h [electronic resource] :  |b Special Functions and Their Classification /  |c by Gerhard Kristensson. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XII, 219 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basic properties of the solutions -- Equations of Fuchsian type -- Equations with one to four regular singular points -- The hypergeometric differential equation -- Legendre functions and related functions -- Confluent hypergeometric functions -- Heun’s differential equation. 
520 |a Second Order Differential Equations presents a classical piece of theory concerning hypergeometric special functions as solutions of second-order linear differential equations. The theory is presented in an entirely self-contained way, starting with an introduction of the solution of the second-order differential equations and then focusingon the systematic treatment and classification of these solutions. Each chapter contains a set of problems which help reinforce the theory. Some of the preliminaries are covered in appendices at the end of the book, one of which provides an introduction to Poincaré-Perron theory, and the appendix also contains a new way of analyzing the asymptomatic behavior of solutions of differential equations. This textbook is appropriate for advanced undergraduate and graduate students in Mathematics, Physics, and Engineering interested in Ordinary and Partial Differntial Equations. A solutions manual is available online. 
650 0 |a Mathematics. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 0 |a Special functions. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Special Functions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Difference and Functional Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441970190 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7020-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)