Partial Differential Equations III Nonlinear Equations /

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Taylor, Michael E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2011.
Έκδοση:2.
Σειρά:Applied Mathematical Sciences, 117
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03158nam a22004335i 4500
001 978-1-4419-7049-7
003 DE-He213
005 20151103125936.0
007 cr nn 008mamaa
008 101109s2011 xxu| s |||| 0|eng d
020 |a 9781441970497  |9 978-1-4419-7049-7 
024 7 |a 10.1007/978-1-4419-7049-7  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Taylor, Michael E.  |e author. 
245 1 0 |a Partial Differential Equations III  |h [electronic resource] :  |b Nonlinear Equations /  |c by Michael E. Taylor. 
250 |a 2. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XXII, 715 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 117 
520 |a The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L^p Sobolev spaces, Holder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis. In this second edition, there are seven new sections including Sobolev spaces on rough domains, boundary layer phenomena for the heat equation, an extension of complex interpolation theory, and Navier-Stokes equations with small viscosity. In addition, several other sections have been substantially rewritten, and numerous others polished to reflect insights obtained through the use of these books over time. Michael E. Taylor is a Professor of Mathematics at the University of North Carolina, Chapel Hill, NC. Review of first edition: “These volumes will be read by several generations of readers eager to learn the modern theory of partial differential equations of mathematical physics and the analysis in which this theory is rooted.”(SIAM Review, June 1998). 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441970480 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 117 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7049-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)