Applied Probability

Applied Probability presents a unique blend of theory and applications, with special emphasis on mathematical modeling, computational techniques, and examples from the biological sciences. It can serve as a textbook for graduate students in applied mathematics, biostatistics, computational biology,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lange, Kenneth (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Έκδοση:Second.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04860nam a22005535i 4500
001 978-1-4419-7165-4
003 DE-He213
005 20151204183536.0
007 cr nn 008mamaa
008 100825s2010 xxu| s |||| 0|eng d
020 |a 9781441971654  |9 978-1-4419-7165-4 
024 7 |a 10.1007/978-1-4419-7165-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Lange, Kenneth.  |e author. 
245 1 0 |a Applied Probability  |h [electronic resource] /  |c by Kenneth Lange. 
250 |a Second. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XVI, 436 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 0 
505 0 |a Basic Notions of Probability Theory -- Calculation of Expectations -- Convexity, Optimization, and Inequalities -- Combinatorics -- Combinatorial Optimization -- Poisson Processes -- Discrete-Time Markov Chains -- Continuous-Time Markov Chains -- Branching Processes -- Martingales -- Diffusion Processes -- Asymptotic Methods -- Numerical Methods -- Poisson Approximation -- Number Theory -- Appendix: Mathematical Review. 
520 |a Applied Probability presents a unique blend of theory and applications, with special emphasis on mathematical modeling, computational techniques, and examples from the biological sciences. It can serve as a textbook for graduate students in applied mathematics, biostatistics, computational biology, computer science, physics, and statistics. Readers should have a working knowledge of multivariate calculus, linear algebra, ordinary differential equations, and elementary probability theory. Chapter 1 reviews elementary probability and provides a brief survey of relevant results from measure theory. Chapter 2 is an extended essay on calculating expectations. Chapter 3 deals with probabilistic applications of convexity, inequalities, and optimization theory. Chapters 4 and 5 touch on combinatorics and combinatorial optimization. Chapters 6 through 11 present core material on stochastic processes. If supplemented with appropriate sections from Chapters 1 and 2, there is sufficient material for a traditional semester-long course in stochastic processes covering the basics of Poisson processes, Markov chains, branching processes, martingales, and diffusion processes. The second edition adds two new chapters on asymptotic and numerical methods and an appendix that separates some of the more delicate mathematical theory from the steady flow of examples in the main text. Besides the two new chapters, the second edition includes a more extensive list of exercises, many additions to the exposition of combinatorics, new material on rates of convergence to equilibrium in reversible Markov chains, a discussion of basic reproduction numbers in population modeling, and better coverage of Brownian motion. Because many chapters are nearly self-contained, mathematical scientists from a variety of backgrounds will find Applied Probability useful as a reference. Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Biomathematics and Human Genetics at the UCLA School of Medicine and the Chair of the Department of Human Genetics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, high-dimensional optimization, and applied stochastic processes. Springer previously published his books Mathematical and Statistical Methods for Genetic Analysis, 2nd ed., Numerical Analysis for Statisticians, 2nd ed., and Optimization. He has written over 200 research papers and produced with his UCLA colleague Eric Sobel the computer program Mendel, widely used in statistical genetics. 
650 0 |a Statistics. 
650 0 |a Mathematical statistics. 
650 0 |a Computer simulation. 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Simulation and Modeling. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441971647 
830 0 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 0 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7165-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)