Simplicial Structures in Topology

Simplicial Structures in Topology provides a clear and comprehensive introduction to the subject. Ideas are developed in the first four chapters. The fifth chapter studies closed surfaces and gives their classification. The last chapter of the book is devoted to homotopy groups, which are used in a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ferrario, Davide L. (Συγγραφέας), Piccinini, Renzo A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2011.
Σειρά:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02783nam a22005295i 4500
001 978-1-4419-7236-1
003 DE-He213
005 20151125201410.0
007 cr nn 008mamaa
008 101013s2011 xxu| s |||| 0|eng d
020 |a 9781441972361  |9 978-1-4419-7236-1 
024 7 |a 10.1007/978-1-4419-7236-1  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
100 1 |a Ferrario, Davide L.  |e author. 
245 1 0 |a Simplicial Structures in Topology  |h [electronic resource] /  |c by Davide L. Ferrario, Renzo A. Piccinini. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XVI, 243 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
505 0 |a Preface -- Fundamental Concepts -- Simplicial Complexes -- Homology of Polyhedra -- Cohonology -- Triangulable Manifolds -- Homotopy Groups -- Bibliography -- Index. 
520 |a Simplicial Structures in Topology provides a clear and comprehensive introduction to the subject. Ideas are developed in the first four chapters. The fifth chapter studies closed surfaces and gives their classification. The last chapter of the book is devoted to homotopy groups, which are used in a short introduction on obstruction theory. The text is more in tune with the original development of algebraic topology as given by Henri Poincaré (singular homology is not discussed). Illustrative examples throughout and extensive exercises at the end of each chapter for practice enhance the text. Advanced undergraduate and beginning graduate students will benefit from this book. Researchers and professionals interested in topology and applications of mathematics will also find this book useful. 
650 0 |a Mathematics. 
650 0 |a Topology. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Topology. 
700 1 |a Piccinini, Renzo A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441972354 
830 0 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7236-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)