Imperfect Bifurcation in Structures and Materials Engineering Use of Group-Theoretic Bifurcation Theory /

This book provides a modern investigation into the bifurcation phenomena of physical and engineering problems. Systematic methods - based on asymptotic, probabilistic, and group-theoretic standpoints - are used to examine experimental and computational data from numerous examples (soil, sand, kaolin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ikeda, Kiyohiro (Συγγραφέας), Murota, Kazuo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Σειρά:Applied Mathematical Sciences, 149
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05033nam a22005655i 4500
001 978-1-4419-7296-5
003 DE-He213
005 20151204182208.0
007 cr nn 008mamaa
008 100907s2010 xxu| s |||| 0|eng d
020 |a 9781441972965  |9 978-1-4419-7296-5 
024 7 |a 10.1007/978-1-4419-7296-5  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Ikeda, Kiyohiro.  |e author. 
245 1 0 |a Imperfect Bifurcation in Structures and Materials  |h [electronic resource] :  |b Engineering Use of Group-Theoretic Bifurcation Theory /  |c by Kiyohiro Ikeda, Kazuo Murota. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XX, 520 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 149 
505 0 |a Overview of Book -- Imperfect Behavior at Simple Critical Points -- Critical Points and Local Behavior -- Imperfection Sensitivity Laws -- Worst Imperfection (I) -- Random Imperfection (I) -- Experimentally Observed Bifurcation Diagrams -- Imperfect Bifurcation of Symmetric Systems -- Group-Theoretic Bifurcation Theory -- Bifurcation Behavior of Dn-Equivariant Systems -- Worst Imperfection (II) -- Random Imperfection (II) -- Description and Computation of Bifurcation Behaviors -- Efficient Transformation for Block-Diagonalization -- Modeling of Bifurcation Phenomena -- Bifurcation of Cylindrical Sand Specimens -- Echelon-Mode Formation -- Bifurcation of Steel Specimens -- Flower Patterns on Honeycomb Structures. 
520 |a This book provides a modern investigation into the bifurcation phenomena of physical and engineering problems. Systematic methods - based on asymptotic, probabilistic, and group-theoretic standpoints - are used to examine experimental and computational data from numerous examples (soil, sand, kaolin, concrete, domes). For mathematicians, static bifurcation theory for finite-dimensional systems, as well as its implications for practical problems, is illuminated by the numerous examples. Engineers may find this book, with its minimized mathematical formalism, to be a useful introduction to modern bifurcation theory. This second edition strengthens the theoretical backgrounds of group representation theory and its application, uses of block-diagonalization in bifurcation analysis, and includes up-to-date topics of the bifurcation analysis of diverse materials from rectangular parallelepiped sand specimens to honeycomb cellular solids. Reviews of first edition: "The present book gives a wide and deep description of imperfect bifurcation behaviour in engineering problems. … the book offers a number of systematic methods based on contemporary mathematics. … On balance, the reviewed book is very useful as it develops a modern static imperfect bifurcation theory and fills the gap between mathematical theory and engineering practice." (Zentralblatt MATH, 2003) "The current book is a graduate-level text that presents an overview of imperfections and the prediction of the initial post-buckling response of a system. ... Imperfect Bifurcation in Structures and Materials provides an extensive range of material on the role of imperfections in stability theory. It would be suitable for a graduate-level course on the subject or as a reference to research workers in the field." ( Applied Mechanics Reviews, 2003) "This book is a comprehensive treatment of the static bifurcation problems found in (mainly civil/structural) engineering applications.... The text is well written and regularly interspersed with illustrative examples. The mathematical formalism is kept to a minimum and the 194 figures break up the text and make this a highly readable and informative book. ... In summary a comprehensive treatment of the subject which is very well put together and of interest to all researchers working in this area: recommended." (UK Nonlinear News, 2002). 
650 0 |a Engineering. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Structural mechanics. 
650 0 |a Control engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Structural Mechanics. 
700 1 |a Murota, Kazuo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441970756 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 149 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7296-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)