Introduction to Homotopy Theory

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: • Basic homotopy; • H-spaces and co-H-spaces; • Fibrations and cofibrations; • Exact sequences of homotopy sets, actions, and coactions; • Homotopy pu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Arkowitz, Martin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03263nam a22004335i 4500
001 978-1-4419-7329-0
003 DE-He213
005 20130725223910.0
007 cr nn 008mamaa
008 110714s2011 xxu| s |||| 0|eng d
020 |a 9781441973290  |9 978-1-4419-7329-0 
024 7 |a 10.1007/978-1-4419-7329-0  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 |a Arkowitz, Martin.  |e author. 
245 1 0 |a Introduction to Homotopy Theory  |h [electronic resource] /  |c by Martin Arkowitz. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XIII, 344 p. 333 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a 1 Basic Homotopy -- 2 H-Spaces and Co-H-Spaces -- 3 Cofibrations and Fibrations -- 4 Exact Sequences -- 5 Applications of Exactness -- 6 Homotopy Pushouts and Pullbacks -- 7 Homotopy and Homology Decompositions -- 8 Homotopy Sets -- 9 Obstruction Theory -- A Point-Set Topology -- B The Fundamental Group -- C Homology and Cohomology -- D Homotopy Groups and the n-Sphere -- E Homotopy Pushouts and Pullbacks -- F Categories and Functors -- Hints to Some of the Exercises -- References -- Index.-. 
520 |a This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: • Basic homotopy; • H-spaces and co-H-spaces; • Fibrations and cofibrations; • Exact sequences of homotopy sets, actions, and coactions; • Homotopy pushouts and pullbacks; • Classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; • Homotopy sets; • Homotopy and homology decompositions of spaces and maps; and • Obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. This approach provides a unifying motif, clarifies many concepts, and reduces the amount of repetitious material. The subject matter is treated carefully with attention to detail, motivation is given for many results, there are several illustrations, and there are a large number of exercises of varying degrees of difficulty. It is assumed that the reader has had some exposure to the rudiments of homology theory and fundamental group theory; these topics are discussed in the appendices. The book can be used as a text for the second semester of an algebraic topology course. The intended audience of this book is advanced undergraduate or graduate students. The book could also be used by anyone with a little background in topology who wishes to learn some homotopy theory. 
650 0 |a Mathematics. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441973283 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7329-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)