Matrices Theory and Applications /

In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Serre, Denis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2010.
Σειρά:Graduate Texts in Mathematics, 216
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03291nam a22005295i 4500
001 978-1-4419-7683-3
003 DE-He213
005 20151204190740.0
007 cr nn 008mamaa
008 101029s2010 xxu| s |||| 0|eng d
020 |a 9781441976833  |9 978-1-4419-7683-3 
024 7 |a 10.1007/978-1-4419-7683-3  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Serre, Denis.  |e author. 
245 1 0 |a Matrices  |h [electronic resource] :  |b Theory and Applications /  |c by Denis Serre. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a XIV, 289 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 216 
505 0 |a Elementary Linear and Multilinear Algebra -- What Are Matrices -- Square Matrices -- Tensor and Exterior Products -- Matrices with Real or Complex Entries -- Hermitian Matrices -- Norms -- Nonnegative Matrices -- Matrices with Entries in a Principal Ideal Domain; Jordan Reduction -- Exponential of a Matrix, Polar Decomposition, and Classical Groups -- Matrix Factorizations and Their Applications -- Iterative Methods for Linear Systems -- Approximation of Eigenvalues. 
520 |a In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Operator theory. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441976826 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 216 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7683-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)