Forest Analytics with R An Introduction /

Forest Analytics with R combines practical, down-to-earth forestry data analysis and solutions to real forest management challenges with state-of-the-art statistical and data-handling functionality. The authors adopt a problem-driven approach, in which statistical and mathematical tools are introduc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Robinson, Andrew P. (Συγγραφέας), Hamann, Jeff D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Use R
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03962nam a22005175i 4500
001 978-1-4419-7762-5
003 DE-He213
005 20151204181410.0
007 cr nn 008mamaa
008 101104s2011 xxu| s |||| 0|eng d
020 |a 9781441977625  |9 978-1-4419-7762-5 
024 7 |a 10.1007/978-1-4419-7762-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Robinson, Andrew P.  |e author. 
245 1 0 |a Forest Analytics with R  |h [electronic resource] :  |b An Introduction /  |c by Andrew P. Robinson, Jeff D. Hamann. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XIV, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R 
505 0 |a Introduction -- Forest data management -- Data analysis for common inventory methods -- Imputation and Interpolation -- Fitting dimensional distributions -- Linear and non-linear models -- Fitting linear hierarchical models -- Simulations -- Forest estate planning and optimization. 
520 |a Forest Analytics with R combines practical, down-to-earth forestry data analysis and solutions to real forest management challenges with state-of-the-art statistical and data-handling functionality. The authors adopt a problem-driven approach, in which statistical and mathematical tools are introduced in the context of the forestry problem that they can help to resolve. All the tools are introduced in the context of real forestry datasets, which provide compelling examples of practical applications. The modeling challenges covered within the book include imputation and interpolation for spatial data, fitting probability density functions to tree measurement data using maximum likelihood, fitting allometric functions using both linear and non-linear least-squares regression, and fitting growth models using both linear and non-linear mixed-effects modeling. The coverage also includes deploying and using forest growth models written in compiled languages, analysis of natural resources and forestry inventory data, and forest estate planning and optimization using linear programming. The book would be ideal for a one-semester class in forest biometrics or applied statistics for natural resources management. The text assumes no programming background, some introductory statistics, and very basic applied mathematics. Andrew Robinson has been associate professor of forest mensuration and forest biometrics at the University of Idaho, and is currently senior lecturer in applied statistics at the University of Melbourne. He received his PhD in forestry from the University of Minnesota. Robinson is author of the popular and freely-available "icebreakeR" document. Jeff Hamann has been a software developer, forester, and financial analyst. He is currently a consultant specializing in forestry, operations research, and geographic information sciences. He received his PhD in forestry from Oregon State University. Both authors have presented numerous R workshops to forestry professionals and scientists, and others. 
650 0 |a Statistics. 
650 0 |a Forestry. 
650 0 |a Forestry management. 
650 0 |a Environmental sciences. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Forestry. 
650 2 4 |a Forestry Management. 
650 2 4 |a Math. Appl. in Environmental Science. 
700 1 |a Hamann, Jeff D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441977618 
830 0 |a Use R 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7762-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)