Statistics and Data Analysis for Financial Engineering

Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exerc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ruppert, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04056nam a22004335i 4500
001 978-1-4419-7787-8
003 DE-He213
005 20151204181410.0
007 cr nn 008mamaa
008 101109s2011 xxu| s |||| 0|eng d
020 |a 9781441977878  |9 978-1-4419-7787-8 
024 7 |a 10.1007/978-1-4419-7787-8  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
082 0 4 |a 330.015195  |2 23 
100 1 |a Ruppert, David.  |e author. 
245 1 0 |a Statistics and Data Analysis for Financial Engineering  |h [electronic resource] /  |c by David Ruppert. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XXII, 638 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Introduction -- Returns -- Fixed income securities -- Exploratory data analysis -- Modeling univariate distributions -- Resampling -- Multivariate statistical models -- Copulas -- Time series models: basics -- Time series models: further topics -- Portfolio theory -- Regression: basics -- Regression: troubleshooting -- Regression: advanced topics -- Cointegration -- The capital asset pricing model -- Factor models and principal components -- GARCH models -- Risk management -- Bayesian data analysis and MCMC -- Nonparametric regression and splines. 
520 |a Financial engineers have access to enormous quantities of data but need powerful methods for extracting quantitative information, particularly about volatility and risks. Key features of this textbook are: illustration of concepts with financial markets and economic data, R Labs with real-data exercises, and integration of graphical and analytic methods for modeling and diagnosing modeling errors. Despite some overlap with the author's undergraduate textbook Statistics and Finance: An Introduction, this book differs from that earlier volume in several important aspects: it is graduate-level; computations and graphics are done in R; and many advanced topics are covered, for example, multivariate distributions, copulas, Bayesian computations, VaR and expected shortfall, and cointegration. The prerequisites are basic statistics and probability, matrices and linear algebra, and calculus. Some exposure to finance is helpful. David Ruppert is Andrew Schultz, Jr., Professor of Engineering and Professor of Statistical Science, School of Operations Research and Information Engineering, Cornell University, where he teaches statistics and financial engineering and is a member of the Program in Financial Engineering. His research areas include asymptotic theory, semiparametric regression, functional data analysis, biostatistics, model calibration, measurement error, and astrostatistics. Professor Ruppert received his PhD in Statistics at Michigan State University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and won the Wilcoxon prize. He is Editor of the Electronic Journal of Statistics, former Editor of the Institute of Mathematical Statistics's Lecture Notes--Monographs Series, and former Associate Editor of several major statistics journals. Professor Ruppert has published over 100 scientific papers and four books: Transformation and Weighting in Regression, Measurement Error in Nonlinear Models, Semiparametric Regression, and Statistics and Finance: An Introduction. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441977861 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7787-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)