The Geometry of Minkowski Spacetime An Introduction to the Mathematics of the Special Theory of Relativity /

  This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics.  It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special r...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Naber, Gregory L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2012.
Σειρά:Applied Mathematical Sciences, 92
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04212nam a22005055i 4500
001 978-1-4419-7838-7
003 DE-He213
005 20151030191328.0
007 cr nn 008mamaa
008 111128s2012 xxu| s |||| 0|eng d
020 |a 9781441978387  |9 978-1-4419-7838-7 
024 7 |a 10.1007/978-1-4419-7838-7  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
100 1 |a Naber, Gregory L.  |e author. 
245 1 4 |a The Geometry of Minkowski Spacetime  |h [electronic resource] :  |b An Introduction to the Mathematics of the Special Theory of Relativity /  |c by Gregory L. Naber. 
264 1 |a New York, NY :  |b Springer New York,  |c 2012. 
300 |a XVI, 324 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 92 
520 |a   This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics.  It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman’s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac’s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group.  This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt  to the presence of gravitational fields that cannot be considered  negligible. The second is to understand some of the basic features of  a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology.   The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title.   Reviews of first edition:    “… a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics.” (American Mathematical Society, 1993)    “Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations.” (CHOICE, 1993)  “… his talent in choosing the most significant results and ordering them within the book can’t be denied. The reading of the book is, really, a pleasure.” (Dutch Mathematical Society, 1993)    . 
650 0 |a Mathematics. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Physics. 
650 0 |a Gravitation. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441978370 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 92 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7838-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)