Generalizations of Thomae's Formula for Zn Curves

This book provides a comprehensive overview of the theory of theta functions, as applied to compact Riemann surfaces, as well as the necessary background for understanding and proving the Thomae formulae. The exposition examines the properties of a particular class of compact Riemann surfaces, i.e.,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Farkas, Hershel M. (Συγγραφέας), Zemel, Shaul (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Developments in Mathematics, Diophantine Approximation: Festschrift for Wolfgang Schmidt, 21
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03257nam a22005295i 4500
001 978-1-4419-7847-9
003 DE-He213
005 20151030101959.0
007 cr nn 008mamaa
008 101110s2011 xxu| s |||| 0|eng d
020 |a 9781441978479  |9 978-1-4419-7847-9 
024 7 |a 10.1007/978-1-4419-7847-9  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Farkas, Hershel M.  |e author. 
245 1 0 |a Generalizations of Thomae's Formula for Zn Curves  |h [electronic resource] /  |c by Hershel M. Farkas, Shaul Zemel. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XVII, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics, Diophantine Approximation: Festschrift for Wolfgang Schmidt,  |x 1389-2177 ;  |v 21 
505 0 |a - Introduction.- 1. Riemann Surfaces -- 2. Zn Curves -- 3. Examples of Thomae Formulae -- 4. Thomae Formulae for Nonsingular Zn Curves -- 5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index. 
520 |a This book provides a comprehensive overview of the theory of theta functions, as applied to compact Riemann surfaces, as well as the necessary background for understanding and proving the Thomae formulae. The exposition examines the properties of a particular class of compact Riemann surfaces, i.e., the Zn curves, and thereafter focuses on how to prove the Thomae formulae, which give a relation between the algebraic parameters of the Zn curve, and the theta constants associated with the Zn curve. Graduate students in mathematics will benefit from the classical material, connecting Riemann surfaces, algebraic curves, and theta functions, while young researchers, whose interests are related to complex analysis, algebraic geometry, and number theory, will find new rich areas to explore. Mathematical physicists and physicists with interests also in conformal field theory will surely appreciate the beauty of this subject. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Special functions. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Special Functions. 
650 2 4 |a Number Theory. 
700 1 |a Zemel, Shaul.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441978462 
830 0 |a Developments in Mathematics, Diophantine Approximation: Festschrift for Wolfgang Schmidt,  |x 1389-2177 ;  |v 21 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7847-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)