Topology, Geometry and Gauge fields Interactions /

This volume is intended to carry on the program, initiated in Topology, Geometry, and Gauge Fields: Foundations (Springer, 2010), of exploring the interrelations between particle physics and topology that arise from their shared notion of a gauge field. The text begins with a synopsis of the geometr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Naber, Gregory L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Applied Mathematical Sciences, 141
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04398nam a22004815i 4500
001 978-1-4419-7895-0
003 DE-He213
005 20151103125630.0
007 cr nn 008mamaa
008 110321s2011 xxu| s |||| 0|eng d
020 |a 9781441978950  |9 978-1-4419-7895-0 
024 7 |a 10.1007/978-1-4419-7895-0  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Naber, Gregory L.  |e author. 
245 1 0 |a Topology, Geometry and Gauge fields  |h [electronic resource] :  |b Interactions /  |c by Gregory L. Naber. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XII, 420 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 141 
505 0 |a Preface -- Acknowledgements -- Geometrical Background -- Physical Motivation -- Frame Bundles and Spacetime -- Differential Forms and Integration Introduction -- de Rham Cohomology Introduction -- Characteristic Classes -- Appendix -- References -- Symbols -- Index. 
520 |a This volume is intended to carry on the program, initiated in Topology, Geometry, and Gauge Fields: Foundations (Springer, 2010), of exploring the interrelations between particle physics and topology that arise from their shared notion of a gauge field. The text begins with a synopsis of the geometrical background  assumed of the reader (manifolds, Lie groups, bundles, connections, etc.). There follows a lengthy, and somewhat informal discussion of a number of the most basic of the classical gauge theories arising in physics, including classical electromagnetic theory and Dirac monopoles, the Klein-Gordon and Dirac equations and SU(2) Yang-Mills-Higgs theory. The real purpose here is to witness such things as spacetime manifolds, spinor structures, de Rham cohomology, and Chern classes arise of their own accord in meaningful physics. All of these are then developed rigorously in the remaining chapters. With the precise definitions in hand, one can, for example, fully identify magnetic charge and instanton number with the Chern numbers of the bundles on which the charge and instanton live, and uncover the obstruction to the existence of a spinor structure in the form of the second Stiefel-Whitney class.  This second edition of the book includes, in an Appendix, a much expanded sketch of Seiberg-Witten gauge theory, including a brief discussion of its origins in physics and its implications for topology.  To provide the reader with the opportunity to pause en route and join in the fun, there are 228 exercises, each an integral part of the development and each located at precisely the point at which it can be solved with optimal benefit. Reviews of first edition: “Naber’s goal is not to teach a sterile course on geometry and topology, but rather to enable us to see the subject in action, through gauge theory.” (SIAM Review)  “The presentation … is enriched by detailed discussions about the physical interpretations of connections, their curvatures and characteristic classes. I particularly enjoyed Chapter 2 where many fundamental physical examples are discussed at great length in a reader friendly fashion.  No detail is left to the reader’s imagination or interpretation.  I am not aware of another source where these very important examples and ideas are presented at a level accessible to beginners.” (Mathematical Reviews)                                                                                             . 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Combinatorics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441978943 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 141 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7895-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)