A Course in Topological Combinatorics

A Course in Topological Combinatorics is the first undergraduate textbook on the field of topological combinatorics, a subject that has become an active and innovative research area in mathematics over the last thirty years with growing applications in math, computer science, and other applied areas...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Longueville, Mark de (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03469nam a22005415i 4500
001 978-1-4419-7910-0
003 DE-He213
005 20151125021922.0
007 cr nn 008mamaa
008 120917s2013 xxu| s |||| 0|eng d
020 |a 9781441979100  |9 978-1-4419-7910-0 
024 7 |a 10.1007/978-1-4419-7910-0  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Longueville, Mark de.  |e author. 
245 1 2 |a A Course in Topological Combinatorics  |h [electronic resource] /  |c by Mark de Longueville. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preface -- List of Symbols and Typical Notation -- 1 Fair-Division Problems -- 2 Graph-Coloring Problems -- 3 Evasiveness of Graph Properties -- 4 Embedding and Mapping Problems -- A Basic Concepts from Graph Theory -- B Crash Course in Topology -- C Partially Ordered Sets, Order Complexes, and Their Topology -- D Groups and Group Actions -- E Some Results and Applications from Smith Theory -- References -- Index. 
520 |a A Course in Topological Combinatorics is the first undergraduate textbook on the field of topological combinatorics, a subject that has become an active and innovative research area in mathematics over the last thirty years with growing applications in math, computer science, and other applied areas. Topological combinatorics is concerned with solutions to combinatorial problems by applying topological tools. In most cases these solutions are very elegant and the connection between combinatorics and topology often arises as an unexpected surprise. The textbook covers topics such as fair division, graph coloring problems, evasiveness of graph properties, and embedding problems from discrete geometry. The text contains a large number of figures that support the understanding of concepts and proofs. In many cases several alternative proofs for the same result are given, and each chapter ends with a series of exercises. The extensive appendix makes the book completely self-contained. The textbook is well suited for advanced undergraduate or beginning graduate mathematics students. Previous knowledge in topology or graph theory is helpful but not necessary. The text may be used as a basis for a one- or two-semester course as well as a supplementary text for a topology or combinatorics class. 
650 0 |a Mathematics. 
650 0 |a Game theory. 
650 0 |a Algorithms. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Combinatorics. 
650 0 |a Graph theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Graph Theory. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Mathematics of Algorithmic Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441979094 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-7910-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)