Weighted Network Analysis Applications in Genomics and Systems Biology /

This book presents state-of-the-art methods, software and applications surrounding weighted networks. Most methods and results also apply to unweighted networks. Although aspects of weighted network analysis relate to standard data mining methods, the intuitive network language and analysis framewor...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Horvath, Steve (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03987nam a22004935i 4500
001 978-1-4419-8819-5
003 DE-He213
005 20151204171725.0
007 cr nn 008mamaa
008 110429s2011 xxu| s |||| 0|eng d
020 |a 9781441988195  |9 978-1-4419-8819-5 
024 7 |a 10.1007/978-1-4419-8819-5  |2 doi 
040 |d GrThAP 
050 4 |a QH301-705 
072 7 |a PSA  |2 bicssc 
072 7 |a SCI086000  |2 bisacsh 
072 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 570  |2 23 
100 1 |a Horvath, Steve.  |e author. 
245 1 0 |a Weighted Network Analysis  |h [electronic resource] :  |b Applications in Genomics and Systems Biology /  |c by Steve Horvath. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XXIII, 421 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Networks and fundamental concepts -- Approximately factorizable networks -- Different type of network concepts -- Adjacency functions and their topological effects -- Correlation and gene co-expression networks -- Geometric interpretation of correlation networks using the singular value decomposition -- Constructing networks from matrices -- Clustering Procedures and module detection -- Evaluating whether a module is preserved in another network -- Association and statistical significance measures -- Structural equation models and directed networks -- Integrated weighted correlation network analysis of mouse liver gene expression data -- Networks based on regression models and prediction methods -- Networks between categorical or discretized numeric variables -- Networks based on the joint probability distribution of random variables -- Index. 
520 |a This book presents state-of-the-art methods, software and applications surrounding weighted networks. Most methods and results also apply to unweighted networks. Although aspects of weighted network analysis relate to standard data mining methods, the intuitive network language and analysis framework transcend any particular analysis method. Weighted networks give rise to data reduction methods, clustering procedures, visualization methods, data exploratory methods, and intuitive approaches for integrating disparate data sets. Weighted networks have been used to analyze a variety of high dimensional genomic data sets including gene expression-, epigenetic-, methylation-, proteomics-, and fMRI- data. Chapters explore the fascinating topological structure of weighted networks and provide geometric interpretations of network methods. Powerful systems-level analysis methods result from combining network- with data mining methods. The book not only describes the WGCNA R package but also other software packages. Weighted gene co-expression network applications, real data sets, and exercises guide the reader on how to use these methods in practice, e.g. in systems-biologic or systems-genetic applications. The material is self-contained and only requires a minimum knowledge of statistics. The book is intended for students, faculty, and data analysts in many fields including bioinformatics, computational biology, statistics, computer science, biology, genetics, applied mathematics, physics, and social science. . 
650 0 |a Life sciences. 
650 0 |a Human genetics. 
650 0 |a Bioinformatics. 
650 0 |a Systems biology. 
650 0 |a Computational biology. 
650 1 4 |a Life Sciences. 
650 2 4 |a Systems Biology. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Human Genetics. 
650 2 4 |a Computer Appl. in Life Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441988188 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-8819-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)