Ensemble Machine Learning Methods and Applications /

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zhang, Cha (Επιμελητής έκδοσης), Ma, Yunqian (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02948nam a22004695i 4500
001 978-1-4419-9326-7
003 DE-He213
005 20151125222308.0
007 cr nn 008mamaa
008 120216s2012 xxu| s |||| 0|eng d
020 |a 9781441993267  |9 978-1-4419-9326-7 
024 7 |a 10.1007/978-1-4419-9326-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Ensemble Machine Learning  |h [electronic resource] :  |b Methods and Applications /  |c edited by Cha Zhang, Yunqian Ma. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a VIII, 332 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction of Ensemble Learning -- Boosting Algorithms: Theory, Methods and Applications -- On Boosting Nonparametric Learners -- Super Learning -- Random Forest -- Ensemble Learning by Negative Correlation Learning -- Ensemble Nystrom Method -- Object Detection -- Ensemble Learning for Activity Recognition -- Ensemble Learning in Medical Applications -- Random Forest for Bioinformatics. 
520 |a It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike. 
650 0 |a Engineering. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Computer Science, general. 
700 1 |a Zhang, Cha.  |e editor. 
700 1 |a Ma, Yunqian.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441993250 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9326-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)