Reading, Writing, and Proving A Closer Look at Mathematics /

Reading, Writing, and Proving is designed to guide mathematics students during their transition from algorithm-based courses such as calculus, to theorem and proof-based courses. This text not only introduces the various proof techniques and other foundational principles of higher mathematics in gre...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Daepp, Ulrich (Συγγραφέας), Gorkin, Pamela (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • -Preface. -1. The How, When, and Why of Mathematics
  • 2. Logically Speaking
  • 3.Introducing the Contrapositive and Converse
  • 4. Set Notation and Quantifiers
  • 5. Proof Techniques
  • 6. Sets
  • 7. Operations on Sets
  • 8. More on Operations on Sets
  • 9. The Power Set and the Cartesian Product
  • 10. Relations
  • 11. Partitions
  • 12. Order in the Reals
  • 13. Consequences of the Completeness of (\Bbb R)
  • 14. Functions, Domain, and Range.- 15. Functions, One-to-One, and Onto
  • 16. Inverses
  • 17. Images and Inverse Images
  • 18. Mathematical Induction
  • 19. Sequences
  • 20. Convergence of Sequences of Real Numbers
  • 21. Equivalent Sets
  • 22. Finite Sets and an Infinite Set
  • 23. Countable and Uncountable Sets
  • 24. The Cantor-Schröder-Bernstein Theorem
  • 25. Metric Spaces
  • 26. Getting to Know Open and Closed Sets
  • 27. Modular Arithmetic
  • 28. Fermat’s Little Theorem
  • 29. Projects
  • Appendix
  • References
  • Index.