Introduction to Calculus and Classical Analysis

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some feature...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hijab, Omar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Έκδοση:3.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02924nam a22005175i 4500
001 978-1-4419-9488-2
003 DE-He213
005 20151120214203.0
007 cr nn 008mamaa
008 110318s2011 xxu| s |||| 0|eng d
020 |a 9781441994882  |9 978-1-4419-9488-2 
024 7 |a 10.1007/978-1-4419-9488-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 |a Hijab, Omar.  |e author. 
245 1 0 |a Introduction to Calculus and Classical Analysis  |h [electronic resource] /  |c by Omar Hijab. 
250 |a 3. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XII, 364 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Preface -- 1 The Set of Real Numbers -- 2 Continuity -- 3 Differentiation -- 4 Integration -- 5 Applications -- A Solutions -- References -- Index . 
520 |a This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; There are 385 problems with all the solutions at the back of the text. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Sequences (Mathematics). 
650 0 |a Special functions. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Special Functions. 
650 2 4 |a Combinatorics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441994875 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9488-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)