Fuzzy Stochastic Optimization Theory, Models and Applications /

Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an order...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wang, Shuming (Συγγραφέας), Watada, Junzo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03193nam a22004695i 4500
001 978-1-4419-9560-5
003 DE-He213
005 20151125212414.0
007 cr nn 008mamaa
008 120319s2012 xxu| s |||| 0|eng d
020 |a 9781441995605  |9 978-1-4419-9560-5 
024 7 |a 10.1007/978-1-4419-9560-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Wang, Shuming.  |e author. 
245 1 0 |a Fuzzy Stochastic Optimization  |h [electronic resource] :  |b Theory, Models and Applications /  |c by Shuming Wang, Junzo Watada. 
264 1 |a Boston, MA :  |b Springer US,  |c 2012. 
300 |a XVI, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I: Theory -- Fuzzy Random Variable -- Fuzzy Stochastic Renewal Processes -- Part II: Models -- System Reliability Optimization Models with Fuzzy Random Lifetimes -- Recourse-Based Fuzzy Random Facility Location Model with Fixed Capacity -- Two-Stage Fuzzy Stochastic Programming with Value-at-Risk: A Generic Model -- VaR-Based Fuzzy Random Facility Location Model with Variable Capacity -- Part III: Real-Life Applications. 
520 |a Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies.   The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins by outlining the history and development of the fuzzy random variable before detailing numerous optimization models and applications that include the design of system controls for a dam. 
650 0 |a Engineering. 
650 0 |a Mathematical optimization. 
650 0 |a Statistics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Optimization. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Watada, Junzo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441995599 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9560-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)