Applied Data Analysis and Modeling for Energy Engineers and Scientists

Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probabil...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Reddy, T. Agami (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03390nam a22005295i 4500
001 978-1-4419-9613-8
003 DE-He213
005 20151204164244.0
007 cr nn 008mamaa
008 110729s2011 xxu| s |||| 0|eng d
020 |a 9781441996138  |9 978-1-4419-9613-8 
024 7 |a 10.1007/978-1-4419-9613-8  |2 doi 
040 |d GrThAP 
050 4 |a T58.8 
072 7 |a TH  |2 bicssc 
072 7 |a TEC031000  |2 bisacsh 
072 7 |a TEC009020  |2 bisacsh 
082 0 4 |a 658.26  |2 23 
100 1 |a Reddy, T. Agami.  |e author. 
245 1 0 |a Applied Data Analysis and Modeling for Energy Engineers and Scientists  |h [electronic resource] /  |c by T. Agami Reddy. 
264 1 |a Boston, MA :  |b Springer US :  |b Imprint: Springer,  |c 2011. 
300 |a XXI, 430 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Models, data analysis and decision making -- Probability concepts and probability distributions -- Data collection and preliminary data analysis -- Making statistical inferences from samples -- Estimation of linear model parameters using least squares -- Designed experiments and analysis of non-intrusive data -- Time series models -- Topics in optimization, parameter estimation and clustering methods -- Inverse problems and illustrative examples -- Decision analysis and risk modeling. 
520 |a Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability,statistics, experimental design, regression, model building, optimization, risk analysis and decision-making to actual engineering processes and systems. The text provides a formal structure that offers a basic, broad and unified perspective,while imparting the knowledge, skills and confidence to work in data analysis and modeling. This volume uses numerous solved examples, published case studies from the author’s own research, and well-conceived problems in order to enhance comprehension levels among readers and their understanding of the “processes”along with the tools. Applied Data Analysis and Modeling for Energy Engineers and Scientists is an ideal volume for researchers, practitioners, and senior level or graduate students working in energy engineering, mathematical modeling and other related areas.  . 
650 0 |a Energy. 
650 0 |a Energy efficiency. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 1 4 |a Energy. 
650 2 4 |a Energy Efficiency (incl. Buildings). 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441996121 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9613-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)