Minisum Hyperspheres

This volume presents a self-contained introduction to the theory of minisum hyperspheres. The minisum hypersphere problem is a generalization of the famous Fermat-Torricelli problem. The problem asks for a hypersphere minimizing the weighted sum of distances to a given point set. In the general fram...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Körner, Mark-Christoph (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Σειρά:Springer Optimization and Its Applications, 51
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03821nam a22004575i 4500
001 978-1-4419-9807-1
003 DE-He213
005 20130808174447.0
007 cr nn 008mamaa
008 110623s2011 xxu| s |||| 0|eng d
020 |a 9781441998071  |9 978-1-4419-9807-1 
024 7 |a 10.1007/978-1-4419-9807-1  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Körner, Mark-Christoph.  |e author. 
245 1 0 |a Minisum Hyperspheres  |h [electronic resource] /  |c by Mark-Christoph Körner. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a VIII, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 51 
505 0 |a -Preface -- 1. Basic Concepts (Circles and Hyperspheres, Minisum Hyperspheres, Mathematical Preliminaries, Finite Dominating Sets) -- 2. Euclidean Minisum Hyperspheres (Basic Assumptions, Distance, Degenerated Solutions, Existence of Optimal Solutions, Incidence Properties, Solution Approaches for the Planar Case, Concluding Remarks) -- 3. Minisum Hyperspheres in Normed Spaces (Basic Assumptions, Distance, Degenerated Solutions, Existence of Minisum Hyperspheres, Incidence Properties, Polyhedral Norms in the Plane, Concluding Remarks) -- 4. Minisum Circle Problem with Unequal Norms (Basic Assumptions, Distance, Properties of Minisum Circles, Polyhedral Norms, Concluding Remarks) -- 5. Minisum Rectangles in a Manhattan Plane (Basic Assumptions, Notations, Point-Rectangle Distance, Restricted Problems, Unrestricted Problem, Concluding Remarks) -- 6. Extensions.– Bibliiography.– Index. 
520 |a This volume presents a self-contained introduction to the theory of minisum hyperspheres. The minisum hypersphere problem is a generalization of the famous Fermat-Torricelli problem. The problem asks for a hypersphere minimizing the weighted sum of distances to a given point set. In the general framework of finite dimensional real Banach spaces, the minisum hypersphere problem involves defining a hypersphere and calculating the distance between points and hyperspheres. The theory of minisum hyperspheres is full of interesting open problems which impinge upon the larger field of geometric optimization. This work provides an overview of the history of minisum hyperspheres as well as describes the best techniques for analyzing and solving minisum hypersphere problems. Related areas of geometric and nonlinear optimization are also discussed.  Key features of Minisum Hyperspheres include:  -assorted applications of the minisum hypersphere problem - a discussion on the existence of a solution to the problem with respect to Euclidean and other norms - several proposed extensions to the problem, including a highlight of positive and negative weights and extensive facilities extensions This work is the first book devoted to this area of research and will be of great interest to graduate students and researchers studying the minisum hypersphere problems as well as mathematicians interested in geometric optimization. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441998064 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 51 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9807-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)