Introduction to Smooth Manifolds

This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research—smooth structures, tangent vectors and covectors, vector bundles, immersed and em...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lee, John M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2012.
Έκδοση:2nd ed. 2012.
Σειρά:Graduate Texts in Mathematics, 218
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03713nam a22004455i 4500
001 978-1-4419-9982-5
003 DE-He213
005 20151204152834.0
007 cr nn 008mamaa
008 120824s2012 xxu| s |||| 0|eng d
020 |a 9781441999825  |9 978-1-4419-9982-5 
024 7 |a 10.1007/978-1-4419-9982-5  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Lee, John M.  |e author. 
245 1 0 |a Introduction to Smooth Manifolds  |h [electronic resource] /  |c by John M. Lee. 
250 |a 2nd ed. 2012. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2012. 
300 |a XVI, 708 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 218 
505 0 |a Preface -- 1 Smooth Manifolds -- 2 Smooth Maps -- 3 Tangent Vectors -- 4 Submersions, Immersions, and Embeddings -- 5 Submanifolds -- 6 Sard's Theorem -- 7 Lie Groups -- 8 Vector Fields -- 9 Integral Curves and Flows -- 10 Vector Bundles -- 11 The Cotangent Bundle -- 12 Tensors -- 13 Riemannian Metrics -- 14 Differential Forms -- 15 Orientations -- 16 Integration on Manifolds.- 17 De Rham Cohomology.- 18 The de Rham Theorem -- 19 Distributions and Foliations.- 20 The Exponential Map.- 21 Quotient Manifolds.-  22 Symplectic Manifolds -- Appendix A: Review of Topology -- Appendix B: Review of Linear Algebra -- Appendix C: Review of Calculus -- Appendix D: Review of Differential Equations -- References -- Notation Index -- Subject Index. 
520 |a This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research—smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441999818 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 218 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4419-9982-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)