Introduction to Smooth Manifolds
This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research—smooth structures, tangent vectors and covectors, vector bundles, immersed and em...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Springer,
2012.
|
Έκδοση: | 2nd ed. 2012. |
Σειρά: | Graduate Texts in Mathematics,
218 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- 1 Smooth Manifolds
- 2 Smooth Maps
- 3 Tangent Vectors
- 4 Submersions, Immersions, and Embeddings
- 5 Submanifolds
- 6 Sard's Theorem
- 7 Lie Groups
- 8 Vector Fields
- 9 Integral Curves and Flows
- 10 Vector Bundles
- 11 The Cotangent Bundle
- 12 Tensors
- 13 Riemannian Metrics
- 14 Differential Forms
- 15 Orientations
- 16 Integration on Manifolds.- 17 De Rham Cohomology.- 18 The de Rham Theorem
- 19 Distributions and Foliations.- 20 The Exponential Map.- 21 Quotient Manifolds.- 22 Symplectic Manifolds
- Appendix A: Review of Topology
- Appendix B: Review of Linear Algebra
- Appendix C: Review of Calculus
- Appendix D: Review of Differential Equations
- References
- Notation Index
- Subject Index.