Knots and Primes An Introduction to Arithmetic Topology /
This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Co...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London,
2012.
|
Σειρά: | Universitext,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preliminaries - Fundamental Groups and Galois Groups
- Knots and Primes, 3-Manifolds and Number Rings
- Linking Numbers and Legendre Symbols
- Decompositions of Knots and Primes
- Homology Groups and Ideal Class Groups I - Genus Theory
- Link Groups and Galois Groups with Restricted Ramification
- Milnor Invariants and Multiple Power Residue Symbols
- Alexander Modules and Iwasawa Modules
- Homology Groups and Ideal Class Groups II - Higher Order Genus Theory
- Homology Groups and Ideal Class Groups III - Asymptotic Formulas
- Torsions and the Iwasawa Main Conjecture
- Moduli Spaces of Representations of Knot and Prime Groups
- Deformations of Hyperbolic Structures and of p-adic Ordinary Modular Forms.