Combinatorial Set Theory With a Gentle Introduction to Forcing /

This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Halbeisen, Lorenz J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2012.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03334nam a22004455i 4500
001 978-1-4471-2173-2
003 DE-He213
005 20151116133846.0
007 cr nn 008mamaa
008 130727s2012 xxk| s |||| 0|eng d
020 |a 9781447121732  |9 978-1-4471-2173-2 
024 7 |a 10.1007/978-1-4471-2173-2  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Halbeisen, Lorenz J.  |e author. 
245 1 0 |a Combinatorial Set Theory  |h [electronic resource] :  |b With a Gentle Introduction to Forcing /  |c by Lorenz J. Halbeisen. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XVI, 456 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a The Setting -- Overture: Ramsey's Theorem -- The Axioms of Zermelo-Fraenkel Set Theory -- Cardinal Relations in ZF only -- The Axiom of Choice -- How to Make Two Balls from One -- Models of Set Theory with Atoms -- Twelve Cardinals and their Relations -- The Shattering Number Revisited -- Happy Families and their Relatives -- Coda: A Dual Form of Ramsey's Theorem -- The Idea of Forcing -- Martin's Axiom -- The Notion of Forcing -- Models of Finite Fragments of Set Theory -- Proving Unprovability -- Models in which AC Fails -- Combining Forcing Notions -- Models in which p = c -- Properties of Forcing Extensions -- Cohen Forcing Revisited -- Silver-Like Forcing Notions -- Miller Forcing -- Mathias Forcing -- On the Existence of Ramsey Ultrafilters -- Combinatorial Properties of Sets of Partitions -- Suite. 
520 |a This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field. 
650 0 |a Mathematics. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447121725 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2173-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)