Markov Models for Handwriting Recognition

Since their first inception more than half a century ago, automatic reading systems have evolved substantially, thereby showing impressive performance on machine-printed text. The recognition of handwriting can, however, still be considered an open research problem due to its substantial variation i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Plötz, Thomas (Συγγραφέας), Fink, Gernot A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:Since their first inception more than half a century ago, automatic reading systems have evolved substantially, thereby showing impressive performance on machine-printed text. The recognition of handwriting can, however, still be considered an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, so far, no standard procedures for building Markov-model-based recognizers could be established though trends toward unified approaches can be identified. Markov Models for Handwriting Recognition provides a comprehensive overview of the application of Markov models in the research field of handwriting recognition, covering both the widely used hidden Markov models and the less complex Markov-chain or n-gram models. First, the text introduces the typical architecture of a Markov model-based handwriting recognition system, and familiarizes the reader with the essential theoretical concepts behind Markovian models. Then, the text gives a thorough review of the solutions proposed in the literature for open problems in applying Markov model-based approaches to automatic handwriting recognition.
Φυσική περιγραφή:VI, 78 p. 5 illus. online resource.
ISBN:9781447121886
ISSN:2191-5768