Traffic-Sign Recognition Systems

This work presents a full generic approach to the detection and recognition of traffic signs. The approach, originally developed for a mobile mapping application, is based on the latest computer vision methods for object detection, and on powerful methods for multiclass classification. The challenge...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Escalera, Sergio (Συγγραφέας), Baró, Xavier (Συγγραφέας), Pujol, Oriol (Συγγραφέας), Vitrià, Jordi (Συγγραφέας), Radeva, Petia (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2011.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03050nam a22005295i 4500
001 978-1-4471-2245-6
003 DE-He213
005 20151204155046.0
007 cr nn 008mamaa
008 110921s2011 xxk| s |||| 0|eng d
020 |a 9781447122456  |9 978-1-4471-2245-6 
024 7 |a 10.1007/978-1-4471-2245-6  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Escalera, Sergio.  |e author. 
245 1 0 |a Traffic-Sign Recognition Systems  |h [electronic resource] /  |c by Sergio Escalera, Xavier Baró, Oriol Pujol, Jordi Vitrià, Petia Radeva. 
264 1 |a London :  |b Springer London,  |c 2011. 
300 |a VI, 96 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Background on Traffic Sign Detection and Recognition -- Traffic Sign Detection -- Traffic Sign Categorization -- Traffic Sign Detection and Recognition System -- Conclusions. 
520 |a This work presents a full generic approach to the detection and recognition of traffic signs. The approach, originally developed for a mobile mapping application, is based on the latest computer vision methods for object detection, and on powerful methods for multiclass classification. The challenge was to robustly detect a set of different sign classes in real time, and to classify each detected sign into a large, extensible set of classes. To address this challenge, several state-of-the-art methods were developed that can be used for different recognition problems. Following an introduction to the problems of traffic sign detection and categorization, the text focuses on the problem of detection, and presents recent developments in this field. The text then surveys a specific methodology for the problem of traffic sign categorization – Error-Correcting Output Codes – and presents several algorithms, performing experimental validation on a mobile mapping application. The work ends with a discussion on future lines of research, and continuing challenges for traffic sign recognition. 
650 0 |a Computer science. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Baró, Xavier.  |e author. 
700 1 |a Pujol, Oriol.  |e author. 
700 1 |a Vitrià, Jordi.  |e author. 
700 1 |a Radeva, Petia.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447122449 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2245-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)