Euclidean Shortest Paths Exact or Approximate Algorithms /

The Euclidean shortest path (ESP) problem asks the question: what is the path of minimum length connecting two points in a 2- or 3-dimensional space? Variants of this industrially-significant computational geometry problem also require the path to pass through specified areas and avoid defined obsta...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Li, Fajie (Συγγραφέας), Klette, Reinhard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04183nam a22005295i 4500
001 978-1-4471-2256-2
003 DE-He213
005 20151125162330.0
007 cr nn 008mamaa
008 111102s2011 xxk| s |||| 0|eng d
020 |a 9781447122562  |9 978-1-4471-2256-2 
024 7 |a 10.1007/978-1-4471-2256-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
100 1 |a Li, Fajie.  |e author. 
245 1 0 |a Euclidean Shortest Paths  |h [electronic resource] :  |b Exact or Approximate Algorithms /  |c by Fajie Li, Reinhard Klette. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XVIII, 378 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I: Discrete or Continuous Shortest Paths -- Euclidean Shortest Paths -- Deltas and Epsilons -- Rubberband Algorithms -- Part II: Paths in the Plane -- Convex Hulls in the Plane -- Partitioning a Polygon or the Plane -- Approximate ESP Algorithms -- Part III: Paths in Three-Dimensional Space -- Paths on Surfaces -- Paths in Simple Polyhedrons -- Paths in Cube Curves -- Part IV: Art Galleries -- Touring Polygons -- Watchman Route -- Safari and Zookeeper Problems. 
520 |a The Euclidean shortest path (ESP) problem asks the question: what is the path of minimum length connecting two points in a 2- or 3-dimensional space? Variants of this industrially-significant computational geometry problem also require the path to pass through specified areas and avoid defined obstacles. This unique text/reference reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. Discussing each concept and algorithm in depth, the book includes mathematical proofs for many of the given statements. Suitable for a second- or third-year university algorithms course, the text enables readers to understand not only the algorithms and their pseudocodes, but also the correctness proofs, the analysis of time complexities, and other related topics. Topics and features: Provides theoretical and programming exercises at the end of each chapter Presents a thorough introduction to shortest paths in Euclidean geometry, and the class of algorithms called rubberband algorithms Discusses algorithms for calculating exact or approximate ESPs in the plane Examines the shortest paths on 3D surfaces, in simple polyhedrons and in cube-curves Describes the application of rubberband algorithms for solving art gallery problems, including the safari, zookeeper, watchman, and touring polygons route problems Includes lists of symbols and abbreviations, in addition to other appendices This hands-on guide will be of interest to undergraduate students in computer science, IT, mathematics, and engineering. Programmers, mathematicians, and engineers dealing with shortest-path problems in practical applications will also find the book a useful resource. Dr. Fajie Li is at Huaqiao University, Xiamen, Fujian, China. Prof. Dr. Reinhard Klette is at the Tamaki Innovation Campus of The University of Auckland. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Numerical analysis. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Pattern recognition. 
650 0 |a Computer-aided engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
700 1 |a Klette, Reinhard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447122555 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2256-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)