Functional Spaces for the Theory of Elliptic Partial Differential Equations

Linear and non-linear elliptic boundary problems are a fundamental subject in analysis and the spaces of weakly differentiable functions (also called Sobolev spaces) are an essential tool for analysing the regularity of its solutions.   The complete theory of Sobolev spaces is covered whilst also ex...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Demengel, Françoise (Συγγραφέας), Demengel, Gilbert (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2012.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03230nam a22004695i 4500
001 978-1-4471-2807-6
003 DE-He213
005 20151029231629.0
007 cr nn 008mamaa
008 120121s2012 xxk| s |||| 0|eng d
020 |a 9781447128076  |9 978-1-4471-2807-6 
024 7 |a 10.1007/978-1-4471-2807-6  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Demengel, Françoise.  |e author. 
245 1 0 |a Functional Spaces for the Theory of Elliptic Partial Differential Equations  |h [electronic resource] /  |c by Françoise Demengel, Gilbert Demengel. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 465 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Preliminaries on ellipticity -- Notions from Topology and Functional Analysis -- Sobolev Spaces and Embedding Theorems -- Traces of Functions on Sobolev Spaces -- Fractional Sobolev Spaces -- Elliptic PDE: Variational Techniques -- Distributions with measures as derivatives.- Korn's Inequality in Lp -- Appendix on Regularity. 
520 |a Linear and non-linear elliptic boundary problems are a fundamental subject in analysis and the spaces of weakly differentiable functions (also called Sobolev spaces) are an essential tool for analysing the regularity of its solutions.   The complete theory of Sobolev spaces is covered whilst also explaining how abstract convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. Other kinds of functional spaces are also included, useful for treating variational problems such as the minimal surface problem.   Almost every result comes with a complete and detailed proof. In some cases, more than one proof is provided in order to highlight different aspects of the result. A range of exercises of varying levels of difficulty concludes each chapter with hints to solutions for many of them.   It is hoped that this book will provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on Schwartz spaces. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
700 1 |a Demengel, Gilbert.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447128069 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2807-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)