Functional Spaces for the Theory of Elliptic Partial Differential Equations
Linear and non-linear elliptic boundary problems are a fundamental subject in analysis and the spaces of weakly differentiable functions (also called Sobolev spaces) are an essential tool for analysing the regularity of its solutions. The complete theory of Sobolev spaces is covered whilst also ex...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London : Imprint: Springer,
2012.
|
Σειρά: | Universitext,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preliminaries on ellipticity
- Notions from Topology and Functional Analysis
- Sobolev Spaces and Embedding Theorems
- Traces of Functions on Sobolev Spaces
- Fractional Sobolev Spaces
- Elliptic PDE: Variational Techniques
- Distributions with measures as derivatives.- Korn's Inequality in Lp
- Appendix on Regularity.