Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles

Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus  is integral to the theory of bifurcati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Han, Maoan (Συγγραφέας), Yu, Pei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London, 2012.
Σειρά:Applied Mathematical Sciences, 181
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04070nam a22005655i 4500
001 978-1-4471-2918-9
003 DE-He213
005 20151103125239.0
007 cr nn 008mamaa
008 120419s2012 xxk| s |||| 0|eng d
020 |a 9781447129189  |9 978-1-4471-2918-9 
024 7 |a 10.1007/978-1-4471-2918-9  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Han, Maoan.  |e author. 
245 1 0 |a Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles  |h [electronic resource] /  |c by Maoan Han, Pei Yu. 
264 1 |a London :  |b Springer London,  |c 2012. 
300 |a XII, 404 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 181 
505 0 |a Hopf Bifurcation and Normal Form Computation -- Comparison of Methods for Computing Focus Values -- Application (I)—Hilbert’s 16th Problem -- Application (II)—Practical Problems -- Fundamental Theory of the Melnikov Function Method -- Limit Cycle Bifurcations Near a Center -- Limit Cycles Near a Homoclinic or Heteroclinic Loop -- Finding More Limit Cycles Using Melnikov Functions -- Limit Cycle Bifurcations in Equivariant Systems. 
520 |a Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus  is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on  the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 0 |a Computer software. 
650 0 |a Statistical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Nonlinear Dynamics. 
700 1 |a Yu, Pei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447129172 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 181 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2918-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)