Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcati...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London,
2012.
|
Σειρά: | Applied Mathematical Sciences,
181 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Hopf Bifurcation and Normal Form Computation
- Comparison of Methods for Computing Focus Values
- Application (I)—Hilbert’s 16th Problem
- Application (II)—Practical Problems
- Fundamental Theory of the Melnikov Function Method
- Limit Cycle Bifurcations Near a Center
- Limit Cycles Near a Homoclinic or Heteroclinic Loop
- Finding More Limit Cycles Using Melnikov Functions
- Limit Cycle Bifurcations in Equivariant Systems.