The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking /

By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on...

Full description

Bibliographic Details
Main Author: Puls, Manfred P. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2012.
Series:Engineering Materials,
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • Preface
  • 1.Introduction
  • 2.Properties of Bulk Zirconium Hydrides
  • 3. Hydride Phases, Orientation Relationships, Habit Planes and Morphologies
  • 4. Solubility of Hydrogen
  • 5. Diffusion of Hydrogen- 6. Characteristics of the Solvus
  • 7. Theories of Coherent Phase Equilibrium
  • 8. Experimental Results and Theoretical Interpretations of Solvus Relationships in the Zr-H System
  • 9. Fracture Strength of Embedded Hydride Precipitates in Zirconium and its Alloys
  • 10 Delayed Hydride Cracking – Theory and Experiment
  • 11 DHC Initiation at Volumetric Flaws
  • 12. Applications to CANDU Reactors.