The Local Structure of Algebraic K-Theory

Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dundas, Bjørn Ian (Συγγραφέας), Goodwillie, Thomas G. (Συγγραφέας), McCarthy, Randy (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2012.
Σειρά:Algebra and Applications, 18
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03717nam a22005175i 4500
001 978-1-4471-4393-2
003 DE-He213
005 20151121052717.0
007 cr nn 008mamaa
008 120905s2012 xxk| s |||| 0|eng d
020 |a 9781447143932  |9 978-1-4471-4393-2 
024 7 |a 10.1007/978-1-4471-4393-2  |2 doi 
040 |d GrThAP 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.66  |2 23 
100 1 |a Dundas, Bjørn Ian.  |e author. 
245 1 4 |a The Local Structure of Algebraic K-Theory  |h [electronic resource] /  |c by Bjørn Ian Dundas, Thomas G. Goodwillie, Randy McCarthy. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XVI, 436 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 1572-5553 ;  |v 18 
505 0 |a Algebraic K-theory -- Gamma-spaces and S-algebras -- Reductions -- Topological Hochschild Homology -- The Trace K → THH -- Topological Cyclic Homology -- The Comparison of K-theory and TC. 
520 |a Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology. 
650 0 |a Mathematics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a K-theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a K-Theory. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Category Theory, Homological Algebra. 
700 1 |a Goodwillie, Thomas G.  |e author. 
700 1 |a McCarthy, Randy.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447143925 
830 0 |a Algebra and Applications,  |x 1572-5553 ;  |v 18 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-4393-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)