Derivative Pricing in Discrete Time

Derivatives are financial entities whose value is derived from the value of other more concrete assets such as stocks and commodities. They are an important ingredient of modern financial markets. This book provides an introduction to the mathematical modelling of real world financial markets and th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cutland, Nigel J. (Συγγραφέας), Roux, Alet (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2013.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03759nam a22005055i 4500
001 978-1-4471-4408-3
003 DE-He213
005 20151204151011.0
007 cr nn 008mamaa
008 120913s2013 xxk| s |||| 0|eng d
020 |a 9781447144083  |9 978-1-4471-4408-3 
024 7 |a 10.1007/978-1-4471-4408-3  |2 doi 
040 |d GrThAP 
050 4 |a HB135-147 
072 7 |a KF  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Cutland, Nigel J.  |e author. 
245 1 0 |a Derivative Pricing in Discrete Time  |h [electronic resource] /  |c by Nigel J. Cutland, Alet Roux. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XV, 325 p. 63 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Derivative Pricing and Hedging -- A Simple Market Model -- Single-Period Models -- Multi-Period Models: No-Arbitrage Pricing -- Multi-Period Models: Risk-Neutral Pricing -- The Cox-Ross-Rubinstein model -- American Options -- Advanced Topics. 
520 |a Derivatives are financial entities whose value is derived from the value of other more concrete assets such as stocks and commodities. They are an important ingredient of modern financial markets. This book provides an introduction to the mathematical modelling of real world financial markets and the rational pricing of derivatives, which is part of the theory that not only underpins modern financial practice but is a thriving area of mathematical research. The central theme is the question of how to find a fair price for a derivative, which is defined to be a price at which it is not possible for any trader to make a risk free profit by trading in the derivative. To keep the mathematics as simple as possible, while explaining the basic principles, only discrete time models with a finite number of possible future scenarios are considered. The authors first examine the simplest possible financial model, which has only one time step, where many of the fundamental ideas occur, and are easily understood. Proceeding slowly, the theory progresses to more realistic models with several stocks and multiple time steps, and includes a comprehensive treatment of incomplete models. The emphasis throughout is on clarity combined with full rigour. The later chapters deal with more advanced topics, including how the discrete time theory is related to the famous continuous time Black−Scholes theory, and a uniquely thorough treatment of American options. The book assumes no prior knowledge of financial markets, and the mathematical prerequisites are limited to elementary linear algebra and probability. This makes it accessible to undergraduates in mathematics as well as students of other disciplines with a mathematical component. It includes numerous worked examples and exercises, making it suitable for self-study. 
650 0 |a Mathematics. 
650 0 |a Finance. 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Finance, general. 
700 1 |a Roux, Alet.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447144076 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-4408-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)