Computational Cancer Biology An Interaction Network Approach /

This brief introduces readers to various problems in cancer biology that are amenable to analysis using methods of probability theory and statistics, building on only a basic background in these two topics.   Aside from providing a self-contained introduction to several aspects of basic biology and...

Full description

Bibliographic Details
Main Author: Vidyasagar, Mathukumalli (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2012.
Series:SpringerBriefs in Electrical and Computer Engineering,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03027nam a22005655i 4500
001 978-1-4471-4751-0
003 DE-He213
005 20151031111114.0
007 cr nn 008mamaa
008 121205s2012 xxk| s |||| 0|eng d
020 |a 9781447147510  |9 978-1-4471-4751-0 
024 7 |a 10.1007/978-1-4471-4751-0  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSA  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Vidyasagar, Mathukumalli.  |e author. 
245 1 0 |a Computational Cancer Biology  |h [electronic resource] :  |b An Interaction Network Approach /  |c by Mathukumalli Vidyasagar. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 80 p. 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- Inferring Genetic Regulatory Networks -- Context-specific Genomic Networks -- Analyzing Statistical Significance -- Separating Drivers from Passengers -- Some Research Directions. 
520 |a This brief introduces readers to various problems in cancer biology that are amenable to analysis using methods of probability theory and statistics, building on only a basic background in these two topics.   Aside from providing a self-contained introduction to several aspects of basic biology and to cancer, as well as to the techniques from statistics most commonly used in cancer biology, the brief describes several methods for inferring gene interaction networks from expression data, including one that is reported for the first time in the brief.  The application of these methods is illustrated on actual data from cancer cell lines.  Some promising directions for new research are also discussed.   After reading the brief, engineers and mathematicians should be able to collaborate fruitfully with their biologist colleagues on a wide variety of problems. 
650 0 |a Computer science. 
650 0 |a Cancer research. 
650 0 |a Bioinformatics. 
650 0 |a Systems biology. 
650 0 |a Biomathematics. 
650 0 |a Statistics. 
650 0 |a Control engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Physiological, Cellular and Medical Topics. 
650 2 4 |a Control. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Systems Biology. 
650 2 4 |a Cancer Research. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447147503 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-4751-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)