Modular Representation Theory of Finite Groups

Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completel...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schneider, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03601nam a22004455i 4500
001 978-1-4471-4832-6
003 DE-He213
005 20151204190349.0
007 cr nn 008mamaa
008 121120s2013 xxk| s |||| 0|eng d
020 |a 9781447148326  |9 978-1-4471-4832-6 
024 7 |a 10.1007/978-1-4471-4832-6  |2 doi 
040 |d GrThAP 
050 4 |a QA251.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.46  |2 23 
100 1 |a Schneider, Peter.  |e author. 
245 1 0 |a Modular Representation Theory of Finite Groups  |h [electronic resource] /  |c by Peter Schneider. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Prerequisites in module theory -- The Cartan{Brauer triangle -- The Brauer character -- Green's theory of indecomposable modules -- Blocks. 
520 |a Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular representation theory of finite groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447148319 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-4832-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)