Efficient Algorithms for Discrete Wavelet Transform With Applications to Denoising and Fuzzy Inference Systems /

Transforms are an important part of an engineer’s toolkit for solving signal processing and polynomial computation problems. In contrast to the Fourier transform-based approaches where a fixed window is used uniformly for a range of frequencies, the wavelet transform uses short windows at high frequ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shukla, K. K. (Συγγραφέας), Tiwari, Arvind K. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04059nam a22005295i 4500
001 978-1-4471-4941-5
003 DE-He213
005 20151103130054.0
007 cr nn 008mamaa
008 130125s2013 xxk| s |||| 0|eng d
020 |a 9781447149415  |9 978-1-4471-4941-5 
024 7 |a 10.1007/978-1-4471-4941-5  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Shukla, K. K.  |e author. 
245 1 0 |a Efficient Algorithms for Discrete Wavelet Transform  |h [electronic resource] :  |b With Applications to Denoising and Fuzzy Inference Systems /  |c by K. K. Shukla, Arvind K. Tiwari. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a IX, 91 p. 46 illus., 31 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- Filter Banks and DWT -- Finite Precision Error Modeling and Analysis -- PVM Implementation of DWT-Based Image Denoising -- DWT-Based Power Quality Classification -- Conclusions and Future Directions. 
520 |a Transforms are an important part of an engineer’s toolkit for solving signal processing and polynomial computation problems. In contrast to the Fourier transform-based approaches where a fixed window is used uniformly for a range of frequencies, the wavelet transform uses short windows at high frequencies and long windows at low frequencies. This way, the characteristics of non-stationary disturbances can be more closely monitored. In other words, both time and frequency information can be obtained by wavelet transform. Instead of transforming a pure time description into a pure frequency description, the wavelet transform finds a good promise in a time-frequency description. Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in digital signal processing (speech and image processing), communication, computer science and mathematics. Wavelet transforms are known to have excellent energy compaction characteristics and are able to provide perfect reconstruction. Therefore, they are ideal for signal/image processing. The shifting (or translation) and scaling (or dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. The nature of wavelet computation forces us to carefully examine the implementation methodologies. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients. This work presents new implementation techniques of DWT, that are efficient in terms of computation requirement, storage requirement, and with better signal-to-noise ratio in the reconstructed signal. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Tiwari, Arvind K.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447149408 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-4941-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)