Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
Algorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in...
Κύριοι συγγραφείς: | Aldrich, Chris (Συγγραφέας), Auret, Lidia (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
London :
Springer London : Imprint: Springer,
2013.
|
Σειρά: | Advances in Computer Vision and Pattern Recognition,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Fusion Methods for Unsupervised Learning Ensembles
ανά: Baruque, Bruno, κ.ά.
Έκδοση: (2011) -
Supervised and Unsupervised Ensemble Methods and their Applications
Έκδοση: (2008) -
Applications of Supervised and Unsupervised Ensemble Methods
Έκδοση: (2009) -
Unsupervised Classification Similarity Measures, Classical and Metaheuristic Approaches, and Applications /
ανά: Bandyopadhyay, Sanghamitra, κ.ά.
Έκδοση: (2013) -
Unsupervised Learning Algorithms
Έκδοση: (2016)