Analysis of Finite Difference Schemes For Linear Partial Differential Equations with Generalized Solutions /

This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partia...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Jovanović, Boško S. (Συγγραφέας), Süli, Endre (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Σειρά:Springer Series in Computational Mathematics, 46
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03340nam a22004815i 4500
001 978-1-4471-5460-0
003 DE-He213
005 20151103123856.0
007 cr nn 008mamaa
008 131021s2014 xxk| s |||| 0|eng d
020 |a 9781447154600  |9 978-1-4471-5460-0 
024 7 |a 10.1007/978-1-4471-5460-0  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Jovanović, Boško S.  |e author. 
245 1 0 |a Analysis of Finite Difference Schemes  |h [electronic resource] :  |b For Linear Partial Differential Equations with Generalized Solutions /  |c by Boško S. Jovanović, Endre Süli. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 408 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 46 
505 0 |a Distributions and function spaces -- Elliptic boundary-value problems -- Finite difference approximation of parabolic problems -- Finite difference approximation of hyperbolic problems. 
520 |a This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Süli, Endre.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447154594 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 46 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-5460-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)