Morse Theory and Floer Homology

This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian sy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Audin, Michèle (Συγγραφέας), Damian, Mihai (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03598nam a22005295i 4500
001 978-1-4471-5496-9
003 DE-He213
005 20151030191406.0
007 cr nn 008mamaa
008 131128s2014 xxk| s |||| 0|eng d
020 |a 9781447154969  |9 978-1-4471-5496-9 
024 7 |a 10.1007/978-1-4471-5496-9  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Audin, Michèle.  |e author. 
245 1 0 |a Morse Theory and Floer Homology  |h [electronic resource] /  |c by Michèle Audin, Mihai Damian. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 596 p. 114 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Introduction to Part I -- Morse Functions -- Pseudo-Gradients -- The Morse Complex -- Morse Homology, Applications -- Introduction to Part II -- What You Need To Know About Symplectic Geometry -- The Arnold Conjecture and the Floer Equation -- The Maslov Index -- Linearization and Transversality -- Spaces of Trajectories -- From Floer To Morse -- Floer Homology: Invariance -- Elliptic Regularity -- Technical Lemmas -- Exercises for the Second Part -- Appendices: What You Need to Know to Read This Book. 
520 |a This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 |a Damian, Mihai.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447154952 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-5496-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)