Neural Networks and Statistical Learning

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Du, Ke-Lin (Συγγραφέας), Swamy, M. N. S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Fundamentals of Machine Learning
  • Perceptrons
  • Multilayer perceptrons: architecture and error backpropagation
  • Multilayer perceptrons: other learing techniques
  • Hopfield networks, simulated annealing and chaotic neural networks
  • Associative memory networks
  • Clustering I: Basic clustering models and algorithms
  • Clustering II: topics in clustering
  • Radial basis function networks
  • Recurrent neural networks
  • Principal component analysis
  • Nonnegative matrix factorization and compressed sensing
  • Independent component analysis
  • Discriminant analysis
  • Support vector machines
  • Other kernel methods
  • Reinforcement learning
  • Probabilistic and Bayesian networks
  • Combining multiple learners: data fusion and emsemble learning
  • Introduction of fuzzy sets and logic
  • Neurofuzzy systems
  • Neural circuits
  • Pattern recognition for biometrics and bioinformatics
  • Data mining.