Person Re-Identification

Re-identification offers a useful tool for non-invasive biometric validation, surveillance, and human-robot interaction in a broad range of applications from crowd traffic management to personalised healthcare. This comprehensive volume is the first work of its kind dedicated to addressing the chall...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gong, Shaogang (Επιμελητής έκδοσης), Cristani, Marco (Επιμελητής έκδοσης), Yan, Shuicheng (Επιμελητής έκδοσης), Loy, Chen Change (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05223nam a22006255i 4500
001 978-1-4471-6296-4
003 DE-He213
005 20151103124017.0
007 cr nn 008mamaa
008 140103s2014 xxk| s |||| 0|eng d
020 |a 9781447162964  |9 978-1-4471-6296-4 
024 7 |a 10.1007/978-1-4471-6296-4  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Person Re-Identification  |h [electronic resource] /  |c edited by Shaogang Gong, Marco Cristani, Shuicheng Yan, Chen Change Loy. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 445 p. 163 illus., 154 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a The Re-Identification Challenge -- Part I: Features and Representations -- Discriminative Image Descriptors for Person Re-Identification -- SDALF -- Re-Identification by Covariance Descriptors -- Attributes-Based Re-Identification -- Person Re-Identification by Attribute-Assisted Clothes Appearance -- Person Re-Identification by Articulated Appearance Matching -- One-Shot Person Re-Identification with a Consumer Depth Camera -- Group Association -- Evaluating Feature Importance for Re-Identification -- Part II: Matching and Distance Metric -- Learning Appearance Transfer for Person Re-Identification -- Mahalanobis Distance Learning for Person Re-Identification -- Dictionary-Based Domain Adaptation Methods for the Re-Identification of Faces -- From Re-Identification to Identity Inference -- Re-Identification for Improved People Tracking -- Part III: Evaluation and Application -- Benchmarking for Person Re-Identification -- Person Re-Identification -- People Search with Textual Queries about Clothing Appearance Attributes -- Large Scale Camera Topology Mapping -- Scalable Multi-Camera Tracking in a Metropolis. 
520 |a Re-identification offers a useful tool for non-invasive biometric validation, surveillance, and human-robot interaction in a broad range of applications from crowd traffic management to personalised healthcare. This comprehensive volume is the first work of its kind dedicated to addressing the challenge of Person Re-Identification, presenting insights from an international selection of leading authorities in the field. Taking a strongly multidisciplinary approach, the text provides an in-depth discussion of recent developments and state-of-the-art methods drawn from the computer vision, pattern recognition and machine learning communities, embracing both fundamental research and practical applications. Topics and features: Introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms, and examines the benefits of semantic attributes Describes how to segregate meaningful body parts from background clutter Examines the use of 3D depth images, and contextual constraints derived from the visual appearance of a group Reviews approaches to feature transfer function and distance metric learning, and discusses potential solutions to issues of data scalability and identity inference Investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference, and describes techniques for improving post-rank search efficiency Explores the design rationale and implementation considerations of building a practical re-identification system This timely collection will be of great interest to academics, industrial researchers and postgraduates involved in computer vision and machine learning, database image retrieval, big data mining, and search engines, as well as to developers keen to exploit this emerging technology for commercial applications. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Gong, Shaogang.  |e editor. 
700 1 |a Cristani, Marco.  |e editor. 
700 1 |a Yan, Shuicheng.  |e editor. 
700 1 |a Loy, Chen Change.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447162957 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6296-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)