An Introduction to Laplace Transforms and Fourier Series

Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dyke, Phil (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Springer Undergraduate Mathematics Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03367nam a22005775i 4500
001 978-1-4471-6395-4
003 DE-He213
005 20151204183651.0
007 cr nn 008mamaa
008 140324s2014 xxk| s |||| 0|eng d
020 |a 9781447163954  |9 978-1-4471-6395-4 
024 7 |a 10.1007/978-1-4471-6395-4  |2 doi 
040 |d GrThAP 
050 4 |a QA307 
050 4 |a QA432 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.72  |2 23 
100 1 |a Dyke, Phil.  |e author. 
245 1 3 |a An Introduction to Laplace Transforms and Fourier Series  |h [electronic resource] /  |c by Phil Dyke. 
250 |a 2nd ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 318 p. 66 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a The Laplace Transform -- Further Properties of the Laplace Transform -- Convolution and the Solution of Ordinary Differential Equations -- Fourier Series -- Partial Differential Equations -- Fourier Transforms -- Wavelets and Signal Processing -- Complex Variables and Laplace Transforms. 
520 |a Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447163947 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6395-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)