Mathematical Tools for Data Mining Set Theory, Partial Orders, Combinatorics /

Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book.  Topics include partially ordered sets, combinatorics,  general topology, metric spaces, linear spaces, graph theory.  To motivate the reader a significant number of a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Simovici, Dan A. (Συγγραφέας), Djeraba, Chabane (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03247nam a22005295i 4500
001 978-1-4471-6407-4
003 DE-He213
005 20151029211743.0
007 cr nn 008mamaa
008 140327s2014 xxk| s |||| 0|eng d
020 |a 9781447164074  |9 978-1-4471-6407-4 
024 7 |a 10.1007/978-1-4471-6407-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Simovici, Dan A.  |e author. 
245 1 0 |a Mathematical Tools for Data Mining  |h [electronic resource] :  |b Set Theory, Partial Orders, Combinatorics /  |c by Dan A. Simovici, Chabane Djeraba. 
250 |a 2nd ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 831 p. 93 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
505 0 |a Sets, Relations and Functions -- Partially Ordered Sets -- Combinatorics -- Topologies and Measures -- Linear Spaces -- Norms and Inner Products -- Spectral Properties of Matrices -- Metric Spaces Topologies and Measures -- Convex Sets and Convex Functions -- Graphs and Matrices -- Lattices and Boolean Algebras -- Applications to Databases and Data Mining -- Frequent Item Sets and Association Rules -- Special Metrics -- Dimensions of Metric Spaces -- Clustering. 
520 |a Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book.  Topics include partially ordered sets, combinatorics,  general topology, metric spaces, linear spaces, graph theory.  To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc.  The book is intended as a reference for researchers and graduate students.  The current edition is a significant expansion of the first edition.  We strived to make the book self-contained, and only a general knowledge of mathematics is required.  More than 700 exercises are included and they form an integral part of the material.  Many exercises are in reality supplemental material and their solutions are included. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Data mining. 
650 0 |a Computer mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
700 1 |a Djeraba, Chabane.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447164067 
830 0 |a Advanced Information and Knowledge Processing,  |x 1610-3947 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-6407-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)