Mathematical Tools for Data Mining Set Theory, Partial Orders, Combinatorics /

Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book.  Topics include partially ordered sets, combinatorics,  general topology, metric spaces, linear spaces, graph theory.  To motivate the reader a significant number of a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Simovici, Dan A. (Συγγραφέας), Djeraba, Chabane (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2014.
Έκδοση:2nd ed. 2014.
Σειρά:Advanced Information and Knowledge Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Sets, Relations and Functions
  • Partially Ordered Sets
  • Combinatorics
  • Topologies and Measures
  • Linear Spaces
  • Norms and Inner Products
  • Spectral Properties of Matrices
  • Metric Spaces Topologies and Measures
  • Convex Sets and Convex Functions
  • Graphs and Matrices
  • Lattices and Boolean Algebras
  • Applications to Databases and Data Mining
  • Frequent Item Sets and Association Rules
  • Special Metrics
  • Dimensions of Metric Spaces
  • Clustering.